
Articles
https://doi.org/10.1038/s41559-021-01457-5

1Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA. 2Microbial Sciences Institute, Yale University, New Haven, CT, USA. 
3Department of Immunobiology and Department of Laboratory Medicine, Yale University, New Haven, CT, USA. 4Biomedical Sciences Graduate Program, 
University of California San Francisco, San Francisco, CA, USA. 5Department of Molecular & Cellular Biology, University of California Berkeley, Berkeley, 
CA, USA. 6Max Planck Institute of Molecular Cell Biology and Genetics, and Max Planck Institute for the Physics of Complex Systems, Dresden, Germany. 
7European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg, Germany. 8Department of Developmental and Cell Biology, 
University of California Irvine, Irvine, CA, USA. 9Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA, 
USA. 10These authors contributed equally: Chang-Yu Chang, Jean C. C. Vila. ✉e-mail: alvaro.sanchez@yale.edu

Harnessing microbial communities is a major aspiration of 
modern biology, with implications in fields as diverse as 
medicine, biotechnology and agriculture1. Several groups 

have demonstrated that small synthetic communities can be engi-
neered to carry out functions such as biodegrading environmen-
tal contaminants2–4, manipulating plant phenotypes5 or producing 
biofuels6,7, among others8,9. Despite these success stories, engineer-
ing consortia from the bottom up (that is, ‘rational design’) remains 
challenging. The function of a consortium is generally affected by 
species interactions, which are difficult to predict from first prin-
ciples and expand rapidly with species richness10–16. Perhaps more 
importantly, microbial communities are rapidly evolving ecological 
systems, and their engineered functions can be disrupted by envi-
ronmental fluctuations, invasive species, species extinctions or the 
fixation of mutant genotypes17–20.

Rather than fighting these eco-evolutionary forces, an alterna-
tive ‘top-down engineering’ approach seeks to leverage ecology and 
evolution to find microbial consortia with desirable attributes20–26. 
Most work has focused on enrichment approaches22,25–28, but a small 
number of studies have gone further and empirically demonstrated 
that ecological communities can respond to artificial selection 
applied at the level of the community itself29,30. This strategy has 
been deployed to iteratively optimize complex microbial commu-
nities that modulate plant phenotypes1,30–34, animal development35 
or the physico-chemical composition of the environment36–40. 

Despite its conceptual elegance, the success of artificial selection at 
the microbiome level has been mixed and generally modest, and 
artificial selection has not yet been widely adopted in microbiome 
engineering1,41.

A limiting factor is that we do not know how to design efficient 
artificial selection protocols at the microbial community level. The 
selection methods used in early studies (for example, refs. 30,42) 
were inspired by even earlier work on artificial group selection of 
either single-species populations43–45, or two-species communi-
ties of sexually reproducing animals29,46. In these studies, new gen-
erations of communities were created through either (1) a sexual 
reproduction-like ‘migrant-pool’ strategy, where the communities 
with the highest function were mixed together and then used to 
inoculate a new generation; or (2) an asexual-like ‘propagule’ repro-
duction strategy, where the best communities were selected and 
then propagated without mixing29,30,36. All subsequent microbial 
ecosystem selection studies followed suit and employed variations 
of those two methods.

But are selection strategies originally developed for small popu-
lations of sexually reproducing organisms well suited to efficiently 
direct the evolution of much larger and diverse communities of 
generally asexual microbes? Are there other alternatives? To address 
these questions, we set out to explore the effectiveness of all previ-
ous selection strategies we could find in the literature. To do this, 
we evaluated them in parallel on the same set of in silico microbial 
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communities and for a number of different functions. We show that 
all of these protocols do worse than a simple screen, a no-selection 
control that has been largely missing from previous microbiome 
selection experiments. The limitations of past protocols led us to 
propose an alternative framework for top-down microbial com-
munity engineering that is based on the directed exploration of the 
ecological structure–function landscape (that is, the map between 
community composition and community function), through iter-
ated rounds of randomization and selection10–12,15,47,48. This approach 
is inspired by the directed evolution field, where proteins and RNA 
molecules are evolved in the laboratory through a guided random 
exploration of their genotype–phenotype maps49,50. In the second 
part of this paper, we address how these structure–function land-
scapes can be systematically navigated in search of stable communi-
ties of high function.

Results
Migrant-pool and propagule breeding strategies are limited in 
their ability to breed high-functioning microbial communities. A 
small number of studies have attempted to breed ecological commu-
nities (including two from our own group), using different variations 
of the migrant-pool and propagule methods of selection30,32,33,36–38,51. 
To better understand the limitations of the empirical strategies used 
in the literature, we first set out to systematically evaluate them 
under identical conditions. To do this empirically, one would have 
to apply all protocols in parallel to the same set of communities 
(hereafter the ‘metacommunity’29), ideally in replicate experiments 
and for various different metacommunities. This would require a 
prohibitively large number of experiments, each with its own con-
trol lines. We therefore resorted to in silico communities, which 
can provide the required throughput and allow us to rigorously 
compare a large number of selection strategies. For that purpose, 
and inspired by the work of others51–55, we have constructed a flex-
ible computational modelling framework (implemented through a 
Python package, ecoprospector; Fig. 1a and Methods) that allows 
us to implement arbitrary community-level selection strategies on 
arbitrarily large populations of arbitrarily diverse in silico commu-
nities (Methods). Microbes within a community grow and interact 
with each other via resource competition following the Microbial 
Consumer Resource Model (MiCRM56–59; Methods). Despite its 
simplicity, the MiCRM exhibits emergent functional and dynamical 
behaviours that recapitulate those observed in both natural58 and 
experimental communities60,61.

Each simulation considers a metacommunity of 96 replicate 
habitats, all containing the same initial composition of 90 resources 
(Methods). Each of these habitats is seeded with ninoc = 106 cells, ran-
domly drawn from a regional pool of 2,100 species that is unique for 
each habitat (Methods and Supplementary Methods). Each species 
is represented by a different randomly sampled vector of nutrient 
utilization parameters (Methods). A typical community is seeded 
with 228 ± 14 (mean ± standard deviation (s.d.)) species. The inocu-
lum size and species richness we used are a lower bound for most 
microbiome enrichment communities (Supplementary Methods)60.

Once inoculated, all 96 communities in the metacommunity 
are allowed to grow for a fixed batch incubation time t (Methods), 
at the end of which we measure their function F. We have tested 
several functions of varying complexity (Supplementary Methods), 
and the majority of our findings are consistent throughout. For that 
reason, we focus on the simplest function and discuss the rest in the 
Supplementary Methods. The simplest case is a community func-
tion that is additive on species contributions: F =

∑
i ϕiNi, where ϕi 

and Ni are the per-capita contribution of species i and its abundance, 
respectively (Methods). This function is by assumption redundantly 
distributed in the community and can be carried out by all species 
in isolation. In the Supplementary Information, we show that elimi-
nating this redundancy assumption does not qualitatively change 

our results. Also for simplicity, we assume that the per-capita con-
tribution of a species is fitness neutral, an assumption that is relaxed 
in the Supplementary Information.

At the end of each batch incubation a subset of those communi-
ties with highest F are selected to breed the next generation, accord-
ing to the selection strategy that is being evaluated (Fig. 1a,b). This 
involves transferring cells and leftover nutrients into new habi-
tats with all nutrients replenished (Methods). In addition, for the 
migrant-pool strategies, each offspring community is seeded by 
multiple parents, and so we also have dispersal. Because cells are 
randomly sampled, this step introduces stochasticity in the popula-
tion dynamics that may cause fluctuations around any dynamical 
attractor. We also note that species are not allowed to evolve (that 
is, change their uptake rates) at any point during the simulations.

Strategies from previous experimental work were adapted to 
our specific standardized conditions (for example, 96 communities,  
incubation time, dilution factor and so on) from the papers where they 
were originally used (Methods and Supplementary Table 1). To evalu-
ate the effectiveness of these adapted strategies under our in silico 
conditions, we applied each of the 12 selection protocols to the same 
starting metacommunity for a total of 20 rounds of artificial selec-
tion (that is, community ‘generations’). To evaluate the stability of the 
selected function when community-level selection is not constantly 
applied, we passaged all communities without selection for an addi-
tional 20 transfers, giving them time to reach equilibrium (Fig. 1b).

To illustrate a typical outcome, we plot in Fig. 1c,d a repre-
sentative artificial selection (AS) line where we used the original 
migrant-pool strategy introduced in ref. 30. For reference, we also 
show the outcome of a random selection (RS) control, where com-
munities were chosen randomly for reproduction (also adapted 
from that used in ref. 30). As shown in Fig. 1c, the mean function 
in the AS line increases more than in the RS control, indicating a  
positive response to selection. Importantly, however, the func-
tion of the highest-performing community (Fmax) in the AS line is 
lower than in a third ‘no-selection’ (NS) control line43, where each 
community in the starting metacommunity is passaged without 
community-level selection (Fig. 1d and Supplementary Fig. 1). In 
other words, a simple ‘ecological prospecting’ procedure, where we 
screen 96 stable enrichment communities for function and select 
the best (for example, ref. 62) would have found a better commu-
nity than the multiple rounds of artificial selection we applied at the 
community level. We note that a NS control line has been missing in 
all microbiome selection experiments that we are aware of.

This experiment illustrates that the mean function in the meta-
community can increase simply because of selection against the 
worst-performing communities. Importantly, the goal of top-down 
microbiome engineering is not to improve the mean function, but to 
find communities with higher functions. Therefore, we propose that 
the difference between the function Fmax of the highest-performing 
community (hereafter referred to as the ‘top community’) in the 
AS line relative to a NS control (Q = Fmax[AS] − Fmax[NS]) is a better 
metric to quantify the success of a selection strategy for top-down 
engineering purposes. Values of Q > 0 indicate a successful selec-
tion experiment, whereas Q < 0 indicates an unsuccessful one. 
Using this metric, we evaluated the success of the 12 propagule and 
mixed-pool protocols used in previous empirical studies, including 
our own (Fig. 1e,f)30–33,35–40. To obtain a statistically sound assess-
ment, we applied each selection method to N = 100 independent 
AS lines, each with their own NS and RS controls (where appli-
cable; Methods). All randomly sampled parameters, including 𝜙i, 
96 regional species pools, the initial resource environment (R𝛼) 
and Ni were resampled for each of the 100 replicates but were kept 
constant across selection methods (and so the statistical analysis is 
always pairwise). For all 12 protocols, the mean function increased 
in response to selection relative to the NS control (the enrichment 
screen; Fig. 1e) and the RS control (Supplementary Fig. 2). Yet, in 
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Fig. 1 | Migrant-pool and propagule strategies are limited in their ability to find new, high-functioning microbial communities. a, We constructed a 
Python package, ecoprospector, which allows us to artificially select arbitrarily large and diverse in silico communities. The experimental design of a 
selection protocol (for example, number of communities, growth medium, method of artificial selection, function under selection and so on) is entered 
in a single input.csv file (Methods). Communities are grown in serial batch culture, where each transfer into a new habitat is referred to as a community 
‘generation’. Within each batch incubation, species compete for nutrients from the supplied medium. At the end of the incubation period, communities 
are selected according to the specified, protocol-specific selection scheme, and the selected group is used to seed the communities in the offspring 
generation. Once the protocol is carried out to completion, ecoprospector outputs a simple text format for later analysis on community function and 
composition. b, Illustration of previously used migrant-pool and propagule selection schemes (AS) as well as the corresponding randomized controls 
(RS)29,43. We also consider a no-selection ‘control’ scheme (NS). All protocols are applied at the end of each community generation and are implemented 
using a matrix representation depicted in Supplementary Fig. 1. c,d, A representative outcome of one community-level selection experiment, where we 
adapted the selection protocol from the migrant-pool strategy in ref. 30. A metacommunity was seeded by inoculating ninoc = 106 randomly drawn cells 
from a species pool into each of 96 identical habitats and allowing them to grow (Methods). The metacommunity was then subject to 20 rounds of 
selection (generations) and allowed to stabilize without selection for another 20 generations. The function maximized under selection F is additive on 
species contributions, whose per-capita species contribution to function is randomly generated (see main text). In each selection round, the top 20% 
of communities with highest F (AS; red) or a randomly chosen set (RS; blue) are selected and mixed into a single pool, which is then used to seed all 
communities in the next generation by randomly sampling 106 cells into them. The NS protocol (green) simply propagates the communities in batch mode 
without selection. The changes in overall function over the generations in average F (c) and in maximum function Fmax (d) are shown. e, Selection strategies 
were adapted from 12 experimental protocols in previous studies (see Supplementary Table 1 and Methods). All were applied to standard metacommunity 
sizes (96 communities), for the same number of generations (20 selection generations + 20 stabilization generations). All protocols have a significantly 
greater mean function in the AS than in the NS line (two-sided paired t-test, P < 0.01) as well as the RS lines (Supplementary Fig. 4). f, The difference 
in Fmax between the AS and NS lines (Q). All protocols show a mean Q < 0 (two-sided Welch’s t-test, P < 0.01), indicating that they did not succeed at 
improving the function of the best stabilized community in the ancestral population.
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line with what we observed in Fig. 1d, all protocols failed to improve 
Fmax relative to the NS control (Fig. 1f).

Selecting communities before they are stable is inefficient. As 
is the case in all previous artificial selection experiments, our 
communities are propagated in serial batch culture. Within each  
batch incubation, the community goes through an ecological suc-
cession. At the end of each batch, a small number of cells are ran-
domly drawn from the community and used to seed a new habitat 
where all nutrients have been replenished, starting a new batch. 
Inspired by a recent study53, we may see each succession as a ‘devel-
opmental’ process at the community level. Communities at the end 
of a batch incubation can be thought of being in an ‘adult state’ and 
ready for reproduction, whereas communities at the beginning 
of an incubation are in an ‘infant state’53. In absence of artificial 
community-level selection, our in silico enrichment communities 
eventually self-assemble into a dynamical state where successions 
are identical every generation (Supplementary Fig. 3). Note that this 
is owing exclusively to population dynamics, and that no evolution 
or migration is necessary60,63–65. We say that communities are ‘genera-
tionally stable’ when the successions are identical across community 
generations and, therefore, the composition of an adult ‘offspring’ 
community is the same as that of its adult ‘parent’. In our simulations, 
we typically need more than five generations to approach a genera-
tionally stable state (Methods).

We speculated that a reason why the selection strategies we 
evaluated above may be failing to improve Fmax is that, following the 
original protocols, we started selection at the end of the first batch 
when the communities are not yet generationally stable. Consistent 
with this hypothesis, we found that the community rank (from the 
highest to lowest function) in the first generation is a poor predictor 
of the rank of generationally stable communities (Supplementary  
Fig. 4; Spearman’s ρ = 0.423, P < 0.01, N = 96). In other words, 
artificial selection in early generations favours communities that 
had a high function early on, but that end up having mediocre 
functions once they are generationally stable (Supplementary  
Fig. 4). This explains why Q < 0 for the vast majority of strategies.  
In Supplementary Figs. 5–7, we further show that the large popula-
tion sizes (N = 106) of the infant communities in our simulations 
(which are in the lower end of what is common in experimental 
microbiome selection) and the lack of heritability away from equilib-
rium also contribute to the failure of the propagule and mixed-pool 
methods to improve Fmax. Both of these methods represent a  
small subset of all possible ways one could generate an offspring 
population from the selected members of the parent population. 
Therefore, we asked if other methods could be used that would 
increase the success of artificial selection to engineer communities 
from the top down.

An artificial community-level selection strategy inspired by 
directed evolution of biomolecules. Directed evolution is a form 
of artificial selection that has been applied for decades to optimize 
molecular and cellular phenotypes49,66,67. In its most common imple-
mentation, directed evolution is an iterative process that navigates 
the genotype–phenotype map in search of a genetic variant of high 
function50,68,69. The process starts by screening a library of genetic 
variants. Those that are closest to the desired phenotype are selected 
and their mutational neighbourhood is then randomly explored 
through mutagenesis or recombination, in search of new variants 
with even higher function. The best among those are selected, and 
the process can be continued as many times as needed68. We rea-
soned that generationally stable communities of high function can 
be similarly found through an iterative, guided exploration of their 
ecological structure–function landscape (Fig. 2a).

To that end, we designed a directed evolution approach that 
consists of the following sequence of steps (Fig. 2a): (1) an initial  

library of communities is created by inoculating identical habitats 
from different species pools, and serially passaged in the absence 
of (community-level) artificial selection to allow all communi-
ties to stabilize; (2) the generationally stable communities are 
then screened for a community-level function of interest, and  
the highest-performing community is selected; (3) the selected 
generationally stable community continues to be passaged intact 
into the offspring generation, retaining its function and compo-
sition. The rest of the offspring generation will consist of proxi-
mal ‘compositional variants’, which have been subject to some  
perturbation (using one of a variety of possible methods presented 
below) in order to generate random differences in community  
composition relative to their ancestor; (4) the offspring communi-
ties are allowed to reach their own generationally stable equilibria; 
and (5) the now generationally stable offspring communities are 
scored for function (Fig. 2a). The process can be repeated as many 
times as needed.

How may we generate proximal compositional variants of the 
best parental community? Various approaches are available includ-
ing adding or removing species, in bulk or in isolation. In Fig. 1, 
the large population sizes of infant communities (n ≈ 106) led to 
a low between-population variation in the selected function (see 
Supplementary Discussion), thus failing to generate a diverse 
enough pool of proximal compositional variants (Supplementary 
Fig. 5). We reasoned that a more stringent propagule bottleneck 
may be able to better explore the structure–function landscape, a 
process that has been successfully applied in the past to converge on 
simpler, functional consortia by dilution-to-extinction70. To test this 
idea, the top community from a stable parent metacommunity was 
selected after 20 serial transfers (with dilution factor = 103×), then 
used to seed a new generation by subjecting it to 95 separate harsh 
dilution shocks (dilution factor = 108×), which led to a mean bot-
tlenecked ‘infant’ population size of n = 9.76 ± 3.12 cells (Fig. 2b). 
The 95 resulting ‘offspring’ communities differed from each other 
in which species from the parental community were randomly sam-
pled in the dilution shock. When subject to serial batch culture, they 
converged to different generationally stable compositions after 20 
additional generations (Supplementary Fig. 8). As they vary in their 
composition (they are compositional variants), the stable offspring 
communities also had different functions and some were higher 
than their parents’ (Fig. 2b).

Consistent with our hypothesis (Fig. 2c), the propagule method 
works best at exploring the structure–function landscape and 
improving Fmax when we use harsh bottlenecks (starting population 
sizes of order n ≈ 10) but it fails at exploring the landscape when 
the number of cells after the bottleneck is above n ≈ 103. For mean 
bottleneck sizes around n ≈ 1, community diversity is too low and 
the function diminishes. The hump-shaped dependence of Fmax on 
the dilution strength shown in Fig. 2c is consistent with the findings 
of dilution-to-stimulation experiments70.

Besides bottlenecks, many other community perturbations can 
be applied to explore the proximal ecological space in search of 
compositional variants with high function. For instance, we could 
create these variants by invading the top parental community with 
a single, high-𝜙i species (that is, a ‘knock-in’; Fig. 2e)71. One could 
also create variants of a community by selectively eliminating 
(‘knocking-out’) one of its members (for example, a species with low 
𝜙i, or one that competes with a higher-contributing species; Fig. 2f). 
In practice, entirely knocking out a species from a natural habitat  
is challenging, but tools exist for the depletion or knock-down of  
species from natural and synthetic communities72–76. Larger and 
more blunt perturbations are also possible: for instance, we could cre-
ate a library of variants by invading the top parental community with 
a randomly sampled set of species from multiple different regional 
pools (that is, a set of migration events; Fig. 2g), or by coalescing 
the top parental community with a library of other generationally 
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b, A representative outcome of directed evolution of in silico microbial communities. N = 96 communities are first stabilized by serially passaging without 
selection with a dilution factor of 103× for 20 generations. The community with the highest function Fmax(parent) (black dots and line) is selected and used 
to seed the new generation. To that end, the selected community is either passaged intact with the same dilution factor of 103× (N = 1), or subject to 95 
dilution shocks (108×) to generate variants. The 96 offspring communities are then propagated for another 20 generations until they stabilize. The top 
offspring variant Fmax(offspring) is highlighted with black dots and line. The red dashed line denotes the Fmax of a NS line. c, Sampling the optimal bottleneck 
size by subjecting a single parent community to bottlenecks of different intensity. Each bottleneck is applied 95 times. In orange, we trace Fmax for the 
highest-function variants for each bottleneck size. In purple, we track the mean function. Inset shows the outcome of repeating this experiment 100 times 
with different starting communities (mean ± s.d.). This shows that intermediate bottlenecks maximize Fmax. d–i, Fmax of 95 stable offspring variants generated 
through a variety of methods (see main text for details), as a function of the Fmax of the (stable) parental community from which all variants were generated. 
Points above the red dashed line indicated an increase in Fmax from parent to offspring. The filled black circle in d marks the representative example shown in b.
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stable communities77,78 (which is a form of migrant-pool method; 
Fig. 2h). Another approach is to introduce a library of small random 
shifts to the nutrient composition, which leads to a rearrangement in  
species composition and therefore to different functions (Fig. 2i). 

We have applied all of these perturbations to N = 100 independent 
lines (Methods), and in all cases they were successful at producing 
one or more dynamically stable community variants with higher 
function than the best member of the parent population (Fig. 2d–i).
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Fig. 3 | iteratively combining bottlenecks and migrations to optimize community function selects for high-functioning communities. a, Schematic of 
iterative protocols of directed evolution. A metacommunity of 96 communities was stabilized for 30 generations by serial batch culture with dilution factor 
103× (Methods). The top community after 30 generations was selected and either passaged intact to the offspring generation or used to generate 95 
new variants by three different means: in addition to the regular dilution factor (103×), we applied a harsh bottleneck (104×; red); we applied a migration 
event where 102 cells (~45 species; Methods) were randomly sampled from the regional pool and added to each community immediately after passaging 
them with the regular dilution factor of 103× (purple); a combination of both: after the passage with regular dilution factor (103×), communities were first 
bottlenecked with a dilution factor (104×), followed by migration from the regional pool (102 cells of ~45 species; green). The 96 offspring communities are 
stabilized for an additional 20 transfers, following which they were scored for function. The process can be iterated at this point. b–d, F for all communities 
in each generation as a function of time. Each vertical dashed line marks the time points at which the metacommunities experience selection followed 
by generation of new variants (colour represents perturbation type). Red horizontal lines represent the Fmax of a NS line. e, Q obtained from each of the 
three protocols at the final time point (generation 460) in N = 100 independent selection lines. Each point represents the outcome of a different directed 
evolution experiment. Brackets represent two-sided paired t-tests (N = 100 for each test). ****P < 0.0001.
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Iteratively combining bottlenecks and migrations to optimize 
community function selects for high-functioning communities 
that are ecologically stable. Some of the perturbations in Fig. 2 
work by eliminating taxa that are deleterious to community function 
(for example, the single-species knockouts or the dilution shocks). 
Others work by adding taxa that are beneficial to community func-
tion (for example, single-species knock-ins or multi-species invasion 
from the regional pool). We hypothesized that a method that com-
bines random elimination of resident strains with random addition 
of new strains could help us find high-function variants, as such a 
method could simultaneously eliminate deleterious species and add 
beneficial ones. Although random deletion can also eliminate ben-
eficial strains and random addition may contribute deleterious ones, 
by ‘tossing the dice’ a sufficiently large number of times we have a 
chance to find one or more variants where the combined effects align 
in the same beneficial direction, reaching high-function regions of 
the ecological space inaccessible through either method alone.

To test this hypothesis, we directed the evolution of a meta-
community (N = 96 communities) using either a species deletion  
protocol (the dilution bottleneck in Fig. 2d), a species addition 
protocol (the migration we introduced in Fig. 2g), or a protocol 
that combined both perturbations simultaneously (Fig. 3a and 
Methods). As we show in Fig. 3b–d, the strategy that combines both 
perturbations finds a higher-function community than the two per-
turbations alone. When we replicated this experiment 100 times 
with different metacommunities, we found that the combination of 
both perturbations produced a significantly higher Q than either 
the dilution shock (Q = 641 ± 163 versus 155 ± 95; two-sided paired 
t-test; P < 0.01, N = 100) or the migration protocol (Q = 641 ± 163 
versus 438 ± 152; two-sided paired t-test; P < 0.01, N = 100; Fig. 3e).

An important strength of using directed evolution to engi-
neer microbial communities from the top down is that we find 
high-functioning communities that are dynamically stable. 
Because, by design, the function we are selecting for is additive and 
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the per-capita contribution of each species (𝜙i) is not affected by 
other species, one could argue that a ‘synthetic’ bottom-up approach 
where we just mix high-contributing taxa would have worked 
equally well (if not better) than our artificial selection protocols. 
This ‘rational design’ is intuitively appealing given that the directed 
evolution protocol used in Fig. 3d selects for communities enriched 
with high-𝜙i species (Supplementary Figs. 9–10). While this may be 
true, as the communities in Fig. 3 have been formed by recurrent 
invasions from the regional species pool, they are likely to be more 
robust to external invasions than synthetic bottom-up consortia. To 
test this hypothesis, we went back to the AS line shown in Fig. 3d, 
and created a bottom-up synthetic consortium by mixing together 
the n species with the highest 𝜙i in the regional pool (where n is 
the number of taxa in our artificially selected community, allowing 
us to control for the effect of biodiversity on functional stability79; 
Fig. 4a and Methods). We then allowed this synthetic community to 
stabilize in the same environment and propagation conditions that 
were used in the AS line.

As shown in Fig. 4b, the generationally stable synthetic com-
munity has indeed higher function than the directed evolution 
experiment. Yet, when we invaded both communities with the 
same random sample of species from the regional pool (contain-
ing 100 cells and, on average, 45 species; Methods), the function 
of the synthetic community collapsed below the artificially selected 
community (Fig. 4b). By averaging over 95 independent invasion 
experiments, we obtained the average resistance (R; a metric of 
ecological stability, which we calculated as in ref. 80), as well as the 
average community function after invasion (F*; Supplementary 
Methods). As we anticipated, the artificially selected community 
was more resistant to invasion (considering either metric) than 
the synthetic consortium (F* = 1,077 ± 48 versus 114 ± 314 and 
R = 0.974 ± 0.072 versus 0.054 ± 0.122, respectively; P < 0.01 in both 
cases; two-sided paired t-test; N = 95; Fig. 4c,d). The synthetic con-
sortium also has lower resistance than the one found by an enrich-
ment screen (the top community in the NS line: R = 0.898 ± 0.150 
versus 0.054 ± 0.122, respectively; P < 0.01; two-sided paired t-test; 
N = 95; Fig. 4c,d).

When we repeated every step of this experiment for the remain-
ing 99 AS lines in Fig. 3e, we found that these results were generic. 
The function of the bottom-up synthetic consortia (Fsyn) is gen-
erally higher than the Fmax found through directed evolution and 
enrichment screens (Fig. 4e). However, the synthetic communities 
are less resistant to invasion than the artificially selected commu-
nities (R = 0.867 ± 0.045 versus 0.217 ± 0.119 and F* = 1,261 ± 190 
versus 530 ± 309, respectively; P < 0.01 in both cases; two-sided 
paired t-test; N = 100; Fig. 4f). Importantly, the directed evolution 
communities were more resistant to invasion, on average, than 
those found through enrichment screens, even though resistance 
to invasion was not directly selected for (R = 0.867 ± 0.045 versus 
0.793 ± 0.087 and F* = 1,261 ± 190 versus 660 ± 180; P < 0.01 in both 
cases; two-sided paired t-test; N = 100; Fig. 4f). This indicates that 
the repeated migrations that are part of the protocol in the directed 
evolution experiment confer the selected communities with higher 
stability to this perturbation (although not necessarily to other per-
turbations; Supplementary Fig. 9). Our results also suggest that a 
simple screen may allow us to find a more ecologically stable (if also 
lower functioning) community than a synthetic consortium, at least 
when ecological stability is not engineered into the consortium.

Discussion
Directed evolution can be used to iteratively optimize the func-
tion of microbial communities, through sequential rounds of 
exploration and selection. Previous approaches to engineer com-
munities from the top down include enrichment (which is often 
followed by a perturbation such as a bottleneck, to reduce com-
munity complexity)20,22–24,28,81,82 and selective breeding by artificial 

selection1,30–33,35–41. The directed evolution approach we have stud-
ied here combines components of both approaches: the iterative 
search that is inherent of the latter, with the idea of building stable 
consortia and exploring compositional variants of the former. In 
addition to inducing evolutionary changes in the resident species, 
the methods to generate compositional variants and explore the 
ecological structure–function landscape include many ecologi-
cal perturbations that randomly sample new species in and out 
of the community. For instance, bottlenecking (also known as 
dilution-to-extinction21,22,27,70,81,83) is a blunt method for randomly 
removing ‘deleterious’ taxa, which has the cost of also eliminating 
potentially beneficial species. Horizontal immigration from the 
regional pool may create variants that contain new and potentially 
‘beneficial’ species, but it has the cost of potentially adding species 
with deleterious effects. A selection method that combines the two 
with strong selection is able to compensate for the specific weak-
nesses of each, leading us to high-function regions of the ecologi-
cal structure–function landscape that were not reached by either of 
the two individual strategies alone (Fig. 4). These communities are 
also ecologically resistant to invasions compared with both enrich-
ment and synthetic communities assembled by artificially mixing 
together species with high per-capita function.

As is the case for any computational model, ours has simplifying 
assumptions and, therefore, limitations. We discuss them at length 
in the Supplementary Discussion. Perhaps the most notable one is 
that, for simplicity, we have focused on a function that is additive 
on the species contributions and that carries no cost at the indi-
vidual level. We relax both these assumptions in the Supplementary 
Methods. We show that our main findings also hold when we work 
with non-additive functions, including those modelling realistic 
community objectives such as resisting invasion from an undesired 
organism or the elimination of a specific metabolite (Extended 
Data Fig. 1). In addition, our main results were found to hold true 
under alternative ecological scenarios, which include growth media 
of different richness and interactions ranging from pure nutrient 
competition to cross-feeding (Extended Data Fig. 2); alternative 
functional responses by the species in our communities (Extended 
Data Fig. 3); different methods of sampling taxa from the environ-
ment (Extended Data Fig. 4); and various distributions of per-capita 
species contributions to the community function, from highly 
redundant to rarefied (Extended Data Fig. 5). Finally, we also show 
that our results hold true when species contributions to the func-
tion under selection are not fitness neutral (Extended Data Fig. 1). 
Although many microbial functions, such as the secretion of meta-
bolic byproducts and overflow metabolites, do not incur any cost to 
their producer84, many other functions are costly for the contribut-
ing cell85.

At this point, it is important to note that our simulations do 
not include within-species evolution. It is thus possible that, on an 
evolutionary timescale, the directly evolved communities would 
be vulnerable to ‘cheater’ mutants that forgo the cost of functional 
contributions in favour of faster growth, outcompeting their direct 
ancestors as would be predicated by social evolution theory85.  
The timescale over which evolution would degrade community 
function is unknown, although recent community evolution exper-
iments suggest that evolution is heavily constrained when species 
are embedded within a complex community86. Furthermore, recent 
artificial community-level selection experiments suggest that one 
may be able to preserve a costly community function that may be 
prone to exploitation by cheaters (the expression of an extracel-
lular enzyme) by continuously purging those communities where  
cheating phenotypes arise (that is, purifying selection at the com-
munity level)40.

It is important to highlight that the mechanisms we have consid-
ered here to generate variation between communities are all purely 
ecological, as we do not allow evolution within species. Taken as a 
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unit, one can consider communities to be evolving: we are introduc-
ing heritable variation between them and then selecting upon that 
variation, and this results in changes in the genetic makeup of the 
communities (that is, their metagenomes) as well as in their attri-
butes55,87. Explicitly incorporating within-species evolution into our 
framework (for example, by allowing new mutants to arise within 
each growth cycle) represents an exciting future direction for this 
work and would allow us to explicitly explore the complex trade-offs 
between community function, ecological stability and evolutionary 
resilience. We hope that our results will not only clarify the limita-
tions of previous approaches to artificially selecting communities, 
but also motivate the development of new empirical methods for 
the directed evolution of microbial communities.

Methods
The ecoprospector package. All the results presented in this paper are generated 
using ecoprospector, a new freely available Python package for implementing 
artificial selection of microbial communities using customizable protocols. The 
package builds off the recently published Community Simulator package (which 
is a dependency of ecoprospector)88 and implements protocols in a modular 
manner that allows an extremely large parameter space of possible protocols to be 
explored. The parameters for all simulations implemented in this paper are stored 
in comma-separated values files (Methods).

Microbial consumer-resource simulations. We model microbial community 
dynamics using the MiCRM56–59 (Supplementary Methods). The MiCRM is a 
minimal model for microbial communities growing in well-mixed resource-limited 
environments (such as in batch culture or in a chemostat). Briefly, the MiCRM 
models the change through time in (1) the abundance of a set of consumer species 
denoted by Ni; and (2) the concentration of a set of resources denoted by R𝛼. In the 
simulations presented in the main text, consumer and resource dynamics can be 
described by the following sets of equations:

dNi

dt = Ni
∑

α

Rαcniα
1 + Rαcniα/σmax

(1)

dRα

dt = −
∑

i
Ni

Rαcniα
1 + Rαcniα/σmax

(2)

In this version of the MiCRM, ecological interactions between species 
arise from the uptake of resources to the environment and the dependence of 
resource import rate on resource concentration follows a Hill (type-III) function, 

Rα cniα
1+Rα cniα /σmax

, where ciα is the uptake rate of species i for resource 𝛼, σmax is the 
maximum resource uptake rate and n is the Hill coefficient for the functional 
response. For all simulations in the main text we have set σmax = 1 and n = 2. A more 
general version of this model can be found in the Supplementary Methods and 
the full list of parameters are in Supplementary Table 2. There we also show that 
our results are not limited to the simplification presented here, but hold true for 
different functional responses (Extended Data Fig. 1–5).

Initial conditions. All simulations are done considering a metacommunity made 
up of multiple independent communities, each of which is simulated using the 
MiCRM. In order to set the consumer uptake rates across the metacommunity 
and the initial resource and species compositions of each community, we have 
adapted the method for constructing random ecosystems from Community 
Simulator. The parameters associated with this and the values we used are outlined 
in Supplementary Table 3 (adapted and expanded from ref. 88) and Supplementary 
Table 4. Unless otherwise specified, these values are set to the default values 
used in the Community Simulator package. These parameters will be referenced 
throughout the rest of the Methods.

Uptake rates. In our simulations of consumer-resource dynamics, species differ 
solely in the uptake rate for different resources, ciα. All ciα are sampled from the 
same probability distribution. In Community Simulator, ciα can be sampled from 
one of three different distributions: (1) a Gaussian distribution; (2) a gamma 
distribution; or (3) a Bernoulli distribution with binary preference levels set by 
c0 and c1 (referred to as the binary model). Denoting the total uptake capacity of 
species i by Ci =

∑
α ciα, these distributions are parameterized in terms of mean 

and variance in total uptake rate: μc = ⟨Ci⟩ and σ2
c = Var(Ci).

For our purposes none of these distributions were suitable because (1) we 
wanted all ciα to be positive (unlike the Gaussian distribution); (2) we wanted ciα 
of some resources to be 0 (unlike the gamma distribution); and (3) we wanted 
more than two possible values of ciα (unlike the binary model). To address these 
limitations, we introduced a new sampling method that combines the gamma 
distribution and the binary model. Under this approach, ciα can be written as the 

product of X and Y, where X is sampled using the binary model and Y is sampled 
from a gamma distribution. The mean and variance of Y is constrained to values 
that ensure that mean and variance of Ci are still μc and σ2

c .
Specifically, under the binary model:

X = c0 + c1Z, (3)

where Z is sampled from the Bernoulli distribution with P =

μc
Mc1 , where M is the 

total number of resources (Supplementary Table 3). Therefore

Mean(X) = c0 +
μc
M

(4)

Var(X) =

c1μc
M

(

1 −
μc
Mc1

)

(5)

Because ciα = XY, to ensure that μc = ⟨Ci⟩ and σ2
c = Var(Ci), we set:

Mean(Y) =

μc/M
Mean(X) (6)

Var(Y) =

σ2
c /M − Var(X)Mean(Y)2

Var(X) + Mean(X)2 (7)

Initial resource conditions. All communities within a metacommunity are 
grown on the same set of M = 90 resources. In order to generate an arbitrary ‘rich’ 
medium, the initial abundance of each resource (R0

α) is obtained by first sampling 
it from a uniform distribution between 0 and 1 and then normalizing R0

α so that 
the total resource concentration 

(∑
α R

0
α
)
 is equal to Rtot = 1,000. All communities 

within a metacommunity have the same R0
α for all α.

Initial consumer conditions. Each simulation of a single metacommunity starts 
with H = 2,100 possible species. Each of the 96 communities in a metacommunity 
is inoculated from a different regional species pool, by sampling ninoc cells from it. 
All species pools contain the same set of 2,100 species but differ from each other 
in the distribution of species abundances (that is, the ranks of species abundance 
differ across pools). As such, some taxa will be exceedingly rare in some species 
pools (and are therefore extremely unlikely to be sampled into that well during 
inoculation), while being common in others (making it more likely that they 
will be sampled in the wells inoculated from those). In practice, this can be 
done experimentally by inoculating each well of a 96-well plate from a different 
environmental inoculum (that is, different aquatic and terrestrial communities 
from various natural and artificial sources: leaf litters, sewage, soil samples or the 
built environment). We have shown in previous work that this strategy generates 
widely different starting communities at the species level60, which exhibit sufficient 
functional variation to elicit a strong response to artificial community-level 
selection40.

The abundance of each species i (where i ranges from 1 to 2,100) in any one 
of the species pools (Ui) follows a power-law distribution with exponent a and 
probability density function:

P(Ui) = aUa−1
i (8)

We use a power-law distribution as natural microbial communities often  
follow power-law-like abundance distributions89. We set a to 0.01, as for our  
ninoc value this gives us communities at the start of our simulations with 225 ± 12 
(for 96 communities) species, which is comparable to previous work (110–1,290 
exact sequence variants in ref. 60). In addition, the rarefaction curves for our  
initial communities are qualitatively similar to rarefaction curves obtained  
from experimental studies (Supplementary Fig. 11). We have also confirmed  
that our results are robust to alternative methods for seeding the initial 
metacommunity (Supplementary Methods and Extended Data Fig. 4). Cell counts 
are converted into initial species abundances Ni through a conversion factor 
ψ, which we set at 106. This means that a value of ninoc = 106 cells is equivalent 
to a total abundance Ninoc = 1 (arbitrary units) in the initial inoculum. Because 
each community is inoculated from a different species pool (each with its own 
abundance distribution), the abundance of each of the H species differs across 
communities, ensuring that our simulations start with compositional and 
functional variability (Fig. 2b).

Incubation. Once the initial resource and consumer abundance has been set and 
the MiCRM parameters have been sampled, a single community-level ‘generation’ 
is simulated by propagating the system forward for an incubation time t via 
numerical integration of dynamical equations (equations (1) and (2)). During a 
batch incubation, resources are depleted (and not replenished) as the consumers 
increase in density. At the end of each batch incubation at time t, the function of 
each community in the metacommunity is quantified (see following section) and 
the communities are ranked in terms of their function.
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Serial passaging. During a single batch incubation, resources are depleted (but 
not replenished) as consumers grow on them. We do not impose any mortality 
within each batch period, consistent with recent empirical findings60, and neither 
species nor resources are externally removed or supplied during an incubation 
period (as they would, for instance, in a chemostat). The batches are incubated 
for a period of time t, which, consistent with experimental practice, does not 
necessarily correspond to the time required to deplete all of the supplied nutrients. 
Rather, the length of the incubation time is a free parameter in our simulations, 
and it can be altered to improve the outcome of artificial selection, reflecting 
empirical practice37. Within each batch period the community undergoes an 
ecological succession that is truncated at time t. With exception of the limit case 
when t goes to infinity and all resources are depleted (so growth stops), the species 
and resources do not reach a fixed stable equilibrium or climax within a batch. 
Nonetheless, when communities are subject to multiple rounds of passaging and 
incubation, communities do converge to a batch or ‘generational’ equilibrium 
characterized by repeatable community dynamics following each round of 
dilution (Supplementary Fig. 3). We refer to this repeatable ecological succession 
as ‘generational stability’, as it reflects convergence of communities to an identical 
composition at equivalent time point within a batch (that is, a community 
generation), without them being a climax community.

Community function. The function F of each community is measured at the end 
of each generation. In principle, any arbitrary community function can be chosen 
as the ‘phenotype’ under selection. For example, one could consider the total 
biomass of the community, the species richness of the community, the distance of 
the abiotic environment from some target state, the resistance to invasion and so 
on. In the main text of this paper, we have limited our analysis to a simple  
additive case:

F =

∑

i
ϕiNi, (9)

where 𝜙i is the per-capita contribution of species i and Ni is its population size. We 
sampled 𝜙i from a normal distribution of mean 0 and standard deviation 𝜎 = 1 so 
species can have both positive and negative effects on the function of interest. An 
example of a function that may be modelled in this manner is the production of 
vitamin B12 by the gut microbiome, which often benefits the host animal90,91. Some 
species in the microbiome produce this vitamin, whereas others are known to 
degrade or uptake those beneficial molecules, competing with the host.

The choice of this sampling distribution for 𝜙i does not qualitatively impact 
our findings. For instance, in Extended Data Fig. 5 we repeat all of our simulations 
for other sampling methods where all 𝜙i are ≥0. These could correspond to 
other biologically realistic additive functions, such as the total biomass of the 
community38, the amount of light scattered on a specific wavelength53 or the 
amount of an enzyme secreted into the environment10. As we show in Extended 
Data Fig. 5, using this and other sampling distributions does not alter our findings 
in any notable manner. For each independent metacommunity simulation we 
sampled 𝜙i at the start of the experiment and then held the values constant (that is, 
species were not ‘evolving’ their 𝜙i trait).

Selection matrix. After the function of each community has been measured, 
the ‘parental’ communities are ‘passaged’ to produce a new set of ‘offspring’ 
communities. The metacommunity size is kept constant (so the number of 
offspring communities is equal to the number of parent communities). Passaging 
simulates the pipetting of bacterial culture into wells containing fresh media (such 
as from one 96-well plate into another). Which parental communities are selected 
to contribute species to each offspring community depends on its ranked function. 
This is specified by a selection matrix S whose element Suv determines the fraction 
of cells from the parental community of rank function v that are used to inoculate 
offspring community u (Supplementary Fig. 1).

In principle, any arbitrary fraction of a parent community of rank v can be 
transferred to offspring community u. For the simulations presented in this paper 
we have set a standard dilution factor d and all non-zero elements of the S matrix 
are set to 1/d. Note that the selection matrix S is similar to the transfer matrix 
f used in the Community Simulator package88 except the indices of the parent 
community are based on the ranked function of the community rather than being 
positional.

We also note that, while for most protocols rank function is determined 
across the entire metacommunity, for a few simulations we carried out here we 
used block designs. In these cases a metacommunity is divided into multiple 
sub-metacommunities (sublines) and the rank function is quantified within each 
sub-metacommunity. The rank function within each sub-metacommunity is 
then used to determine which parents are selected. For these cases the selection 
matrix is divided into blocks along the v axis with each sub-metacommunity being 
allocated one block. Communities are then sorted by rank along the v axis within 
each block. See refs. 35,39 in Supplementary Table 1 for examples.

Passaging. The passaging algorithm considers the transfer of both resources and 
species. Resource concentrations Rα are treated as continuous, and we assume 
they are transferred without any noise. Let Ru

α be the concentration of resource α 

(ranging from 1 to 90) in offspring community at position u (ranging from 1 to 
96) and Rv

α be the concentration of resource α in parent community with rank v 
(ranging from 1 to 96). We can then write

Ru
α = R0

α +

∑

v
Rv

αSuv, (10)

where R0
α (the initial resource condition) denotes the amount of Rα in the freshly 

supplied medium. The term 
∑

v R
v
αSuv  captures the resources that are passed 

from either one or multiple parent communities (depending on S) to the offspring 
community.

Species abundances Ni are treated as discrete in order to incorporate 
demographic noise. Let Nu

i  be the abundance of species i in offspring community 
u and Nv

i  be the abundance of species i in parent community with rank v. The total 
number of cells of all species (z) that are passaged from parent community with 
rank v to offspring community u is distributed according to a Poisson distribution:

z ∼ Poisson
(

ψ
∑

i
Nv

i Suv
)

(11)

Note that ψ is the conversion factor that determines the amount of cells 
equivalent to Ni = 1, in this case ψ = 106. The species identity of each cell transferred 
to community u is then determined by multinomial sampling with the probability 
of any one cell belonging to species i being equal to the relative abundance of 
species i in the parent community (πi =

Nv
i∑

i Nv
i
). This procedure is repeated 

for every pair of parent (v) and offspring community (u). After this has been 
completed, the total number of cells of each species transferred to each offspring 
community is converted back into abundances (Nv

i ) using the conversion factor ψ.
Aside from the introduction of Poisson sampling for the total cell number, 

this procedure is identical to the one used in the Community Simulator package. 
Poisson sampling accounts for variability in total number of cells transferred after 
each generation, an important source of error (compositional variation) in the 
batch culture lab experiments we are modelling here.

Random seed. A single random seed is used to uniquely determine the initial 
species abundances of the metacommunity, the species features ci𝛼 and 𝜙i, and 
the resource composition in the medium R0

α. While each community in the 
metacommunity will have different initial species abundances, each random  
seed is associated with a unique set of initial species abundances across the  
entire metacommunity. As well as ensuring that our results are reproducible,  
this allows us to carry out different protocols on identical sets of starting 
communities. For this reason, most statistical comparisons in this paper are paired, 
reflecting the fact that the results are non-independent when different protocols 
are tested using the same random seed. All simulations throughout the main text 
were run for 100 unique seeds and those in Extended Data Figs. 1–5 were run for 
20 unique seeds.

Directed evolution. After seeding the metacommunity, we allow all 96 
communities to stabilize by propagating them for 20 transfers without selection 
(using S = (1/d)I, where I is the identity matrix, as we do in the NS control). 
Then the highest functioning community is selected and passaged into 96 fresh 
habitats with a dilution factor of d = 103× (the same one that had been used during 
the 20 previous transfers). One of these new communities is left unperturbed. 
The other 95 copies are all perturbed as described below in an attempt to push 
the community to a new stable state. After the perturbation, all communities, 
including the unperturbed community, are grown for 20 generations without 
selection (S = (1/d)I) to let them reach a stable state.

In Fig. 2d–i, we consider the following six different types of perturbation 
and their magnitudes that are applied to the 95 copies of the top-performing 
community (Supplementary Table 5).

Bottleneck perturbation. This approach involves subjecting the 95 communities 
to an additional dilution step. This is done by repeating the passaging protocol 
described previously using S = (1/dbot)I, where dbot is the bottleneck dilution 
factor. For Fig. 2b,d, dbot = 105. An average of N = 9.76 ± 3.12 cells remain in the 
community after a bottleneck of this magnitude. In Fig. 2c we carried out this 
procedure multiple independent times using a gradient of bottleneck dilution 
factors (ranging 10 to 8 × 105).

Species knock-in. This approach involves introducing a different high-functioning 
species from the regional pool into each of the 95 communities. A collection 
of candidate high-performing species is first prepared by growing every single 
species from the regional pool in monoculture, passaging them in the same batch 
condition as the communities for 20 serial transfers, and then identifying the top 
5% of species (threshold percentile 𝜃 = 0.95) according to their rank function. This 
gives us a collection of 105 candidate species from the pool of H = 2,100. We then 
invaded each of the 95 communities with a different randomly chosen candidate 
from this set. This is done by introducing 103 cells of the chosen species into each 
community after they have been diluted. The value 103 is chosen to minimize the 
probability of stochastic extinction of the invader.
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Knock out. This approach involves eliminating one of the species in the community, 
so that all offspring communities have n − 1 species (whereas the parent had n). 
In each community we delete a different taxa. When n < 95 (as is the case for our 
simulations) the number of perturbed offspring communities is equal to n. The 
95 − n ‘spare’ communities are left unperturbed.

Migration. This approach involves perturbing the communities by invading  
with them a random set of species sampled from different regional pools.  
We use the same approach that we used to initially inoculate the communities. 
To recap, for each community we added nmig = 106 cells randomly sampled from 
different regional species pool, in which the species abundances are distributed 
according to equation (5). The number of cells introduced via migration is 
comparable to the number of cells in the communities after the regular batch 
dilution (~106)

Coalescence. This approach involves coalescencing the copies of top-performing 
communities with the other stable communities in the metacommunity before 
selection. To do this, the parents’ metacommunity is not discarded at the point of 
directed evolution. Instead, it is kept and the offspring metacommunity is grown 
for a single generation (so that both the parent and offspring metacommunities are 
in stationary phase). The two metacommunities are then mixed, generating a new 
metacommunity of coalesced communities. Let J be the resource and consumer 
abundance of the offspring metacommunity and K be the resource and consumer 
abundance of the parent metacommunity. The consumer and resource abundance 
of the mixed metacommunity L is simply:

L = (1 − fcoa)J + fcoaK (12)

For our simulations we use fcoa = 0.5, equivalent to mixing equal volumes. To 
inoculate into the offspring community, the coalesced communities are then 
diluted with a dilution factor d = 103× (using S = I/d).

Resource shift. This approach involves introducing a different random change 
to the ‘media’ (R0

α) of each of the 95 communities. We have a complex media of 
M = 90 resources. We first select the most abundant resource in the media and 
reduce its abundance by 𝛿R1. This amount of resource is then added to one of the 
other 89 resources chosen at random. For our simulations we set 𝛿 = 1. Unlike 
other perturbations mentioned above that only happen in the short term (pulse 
perturbation), the change in nutrient composition is permanent and persists for 
the rest of the simulation (press perturbation)80.

Note that whether a type of perturbation performs better than others depends 
on its magnitude (for example, dilution factor in bottleneck, or amount of resource 
being shifted), which we have not systematically explored except for the bottleneck 
(Fig. 2b). We chose the parameter values so that the effect sizes shown in Fig. 2d–i 
all have a similar magnitude, but quantitative comparisons among them should  
be avoided.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data generated and analysed in this paper can be found at https://doi.org/ 
10.5281/zenodo.4608427.

Code availability
All simulations were conducted in Python using ecoprospector (https://github.
com/Chang-Yu-Chang/ecoprospector). All the data analysis was conducted in R. 
The complete code used for this paper including the ecoprospector package can be 
found in the Zenodo repository (https://doi.org/10.5281/zenodo.4608427).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Non-additive function, costly function, and two empirically motivated functions. a, Illustration of the different types of community 
function we have considered. In addition to the additive function used in the main text we have simulated four other community functions: a non-additive 
pairwise function, a costly function, a function that maximizes the consumption of a target resource, and a function that maximizes resistance to an 
invader. Panels B-F reproduce the main results reported in Figs. 1–4. b, Difference in Fmax between the artificial selection line (AS) and no-selection line (NS) 
for all previously published protocols, corresponding to Fig. 1f. c, Difference in Fmax between parent (before directed evolution) and offspring (after directed 
evolution) for the 6 types of perturbation considered in Fig. 2, this plot aggregates the results shown in Fig. 2d-i. d, Reproduction of Fig. 3e, to show that 
iteratively combining migrations and bottlenecks does better than either alone. Q is obtained from each of the three iterative protocols at generation 460 
(e) Reproduction of Fig. 4e, where we compare Fmax of the no-selection (NS), directed evolution (DE), and synthetic communities; (F) Mean function (F*) 
of the DE, NS and Synthetic communities following an ecological perturbation (migration). This corresponds to the y-axis of Fig. 4f.
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Extended Data Fig. 2 | Alternative ecological scenarios with metabolic cross-feeding. Besides the rich medium without cross-feeding shown in the main 
text, we have included two other ecological scenarios: i) rich medium with cross-feeding and ii) simple minimal medium with cross-feeding. The layout of 
(B-F) follows Extended Data Fig. 1b–f, reproducing the main results from Figs. 1–4.
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Extended Data Fig. 3 | Functional responses. The resource import rate depends on its concentration in the environments, which can take a linear (type I),  
Monod (type II), or Hill (type III) form. A Type-III functional response is used in the simulation presented in the main text. The layout of (B-F) follows 
Extended Data Fig. 1b–f, reproducing the main results from Figs. 1–4.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Alternative Metacommunity sampling approaches. We simulate three metacommunity sampling approaches: i) Each community 
is seeded with 106 cells drawn from a different regional pool, where the species abundances in each regional pool are drawn from a power-law distribution 
with a=0.01, ii) Each community is seeded with 106 cells drawn from a different regional, where the species abundances in each regional pool are drawn 
from a log-normal distribution with mean μ=8 and standard deviation σ=8, iii) Each community is seeded with a randomly chosen set of 225 species and 
they are all set to have the same initial abundance. The simulation in the main text adopts the power-law distribution approach. The layout of (B-F) follows 
Extended Data Fig. 1b–f, reproducing the main results from Figs. 1–4.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Different distributions of per capita species contribution to additive community function. Per capita species contribution drawn 
from i) normal distribution centered around 0 with standard deviation sd=1, ii) normal distribution with mean=11 and sd=1, iii) uniform distribution ranged 
from min=0 to max=1, iiii) a sparse additive function where 20% of the species contribute to community function.In the main text, per capita species 
contribution uses normal distribution with mean=0 and sd=1. The layout of (B-F) follows Extended Data Fig. 1b–f, reproducing the main results from Figs. 1–4.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code
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Data collection All simulation data are generated using the customized python package Ecoprospector (the code is available on GitHub repository https://
github.com/Chang-Yu-Chang/ecoprospector), which is based on a published python package community-simulator (https://github.com/
Emergent-Behaviors-in-Biology/community-simulator). Ecoprospector was developed under python 3.8.3.  The complete code used for this 
paper including the ecoprospector package and inputs for the simulations can be found in the Zenodo repository (https://doi.org/10.5281/
zenodo.4608427). 

Data analysis All analyses are conducted using R 3.6.0. The data generated and customized R scripts for analysing and plotting the data can be found at 
https://doi.org/10.5281/zenodo.4608427
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- A description of any restrictions on data availability
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Sample size We did not pre-calculate the sample size prior to simulation. For simulating one experiment of artificial community selection, we chose N=96 
communities because it is close to the largest number of communities in previous studies (N=92) and because 96-well plates are widely used 
in high-throughput microbial ecology and evolution experiments. We chose N=100 replicates of experiments because at this scale we have 
exceeded the largest number of replicate lines reported in previous study (where N=6) and it gives us a statistical sound sample size.

Data exclusions No data was excluded.

Replication As the data were generated by simulation and every replicate experiment (total N=100) was given an unique random seed that initiates 
random number generator, to ensure statistical independence and reproducibility.

Randomization Each replicate simulation is fully randomized due to the use of a different (and reproducible) random seed.

Blinding Blinding is not applicable during data collection as the data were generated by simulation.
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